
How Many Problems Could an Unsolvable Problem
Solve if an Unsolvable Problem Could Solve

Problems?
An Introduction to Computability Theory and the Turing Degrees

Andrew DeLapo

University of Connecticut

Mathematics Continued Conference
March 2, 2024

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 1 / 20



Intuition

Let N denote the natural numbers. Then Nk = {(n1, . . . , nk) : ni ∈ N}.

Idea

A function f : Nk → N is computable if its output can be determined
by an algorithm.

If you have coded before, a computable function is one for which you
can write code.

Any reasonable definition of “computable” should:

1 include every constant function;

2 include addition, subtraction, multiplication, division;

3 be closed under composition.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 2 / 20



One Model for Computation: URMs

We have countably many registers:

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 · · ·

where each Ri contains a natural number.We also have the following
instructions:

• Z(i) : sets Ri = 0

• S(i) : increments the value in Ri by 1

• T(i, j) : copies the value in Ri into Rj

• J(i, j, k) : if Ri = Rj , jump to instruction k

An unlimited register machine (URM) is a finite list of
instructions on these registers. On input (n0, . . . , nk), set Ri = ni for
each i ≤ k, and Ri = 0 for all other i. Follow the instructions. If it runs
out of instructions, the URM halts, and it outputs the value in R0.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 3 / 20



Unlimited Register Machines

Example

The following program computes the sum of the first two inputs.

1 Z(2)

2 J(1, 2, 6)

3 S(0)

4 S(2)

5 J(0, 0, 2)

Example

The following program runs forever and never halts.

1 J(0, 0, 1)

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 4 / 20



Computable Functions

Definition

A partial function f : Nk → N is a function which might be
undefined on some inputs. Write f(n1, . . . , nk) ↓ if f is defined on the
input (n1, . . . , nk), or f(n1, . . . , nk) ↑ otherwise.

Definition

A partial function f : Nk → N is computable if there is a URM which
does what f does, meaning on input (n1, . . . , nk), it halts and outputs
f(n1, . . . , nk) if f is defined, or runs forever without halting if
f(n1, . . . , nk) ↑.

Examples

The addition function (n1, n2) 7→ n1 + n2 is computable. The function
N → N which is undefined everywhere is also computable.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 5 / 20



Computable Functions

Theorem (Church-Turing Thesis)

A function is computable if and only if there is an algorithm for
determining its output.

This says that many ways of thinking about computable functions —
URM programs, Turing machines, Python programs, etc. — are
equivalent.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 6 / 20



Enumerating Computable Functions

Definition

A set X is countable if there is a surjective function f : N → X. For a
countable set X, we can enumerate X and write X = {x0, x1, x2, . . . }.

Examples

The set Q of rational numbers is countable, but the set R of real
numbers is uncountable. The set P(N) = {A : A ⊆ N} is uncountable.

Theorem

Let X be a finite set of symbols, and let X<N be the set of finite strings
from those symbols. Then X<N is countable.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 7 / 20



Enumerating Computable Functions

Theorem

There are only countably many computable functions.

Proof.

Given a computable function, there is an associated URM program. A
URM program is a finite string of letter and number symbols. Then
there are countably many programs, so only countably many
computable functions.

We can write Φ0, Φ1, Φ2, . . . as an enumeration of the computable
functions.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 8 / 20



Computable Sets

Definition

A set A ⊆ N is computable if its characteristic function

χA(x) =

{
1 if x ∈ A

0 if x /∈ A

is computable.

Examples

The following sets are computable:

• The set of even numbers

• The set of prime numbers

• The empty set and N

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 9 / 20



A Non-Computable Set

Theorem

The set K = {e ∈ N : Φe(e) ↓}, known as the halting problem, is
non-computable.

Proof.

If K were computable, its characteristic function χK would be
computable. Then there is e ∈ N such that χK = Φe. Define f : N → N
by

f(n) =

{
↑ if χK(x) = 1

1 if χK(x) = 0
.

Then f is computable, so there is i such that f = Φi. What is f(i)?

f(i) = 1 ⇐⇒ χK(i) = 0 ⇐⇒ i /∈ K ⇐⇒ Φi(i) ↑ ⇐⇒ f(i) ↑

This is a contradiction, so K is not computable.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 10 / 20



Computing with Non-Computable Sets

Recall the setup of for URMs: we have countably many registers

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 · · ·

and instructions:

• Z(i) : sets Ri = 0

• S(i) : increments the value in Ri by 1

• T(i, j) : copies the value in Ri into Rj

• J(i, j, k) : if Ri = Rj , jump to instruction k

We now allow a URM to additionally be given a set A ⊆ N, called an
oracle, and a new instruction:

• O(i, j) : if Ri ∈ A, jump to instruction j

If A is not computable, then the URM might be able to solve new
problems it could not before.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 11 / 20



Oracle Computation

Notation

Write ΦA
e for a computable function which has oracle A.

Definition

A function f : Nk → N is A-computable if there is a URM with oracle
A which does what f does. Equivalently, there is e ∈ N such that
f = ΦA

e .

Definition

A set B is A-computable if its characteristic function χB is
A-computable.

Intuitively, B is A-computable if, given information about A, we can
figure out what numbers are in B.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 12 / 20



The Turing Degrees

Definition

For sets A and B, B is Turing reducible to A, written B ≤T A, if B
is A-computable. If B ≤T A and A ≤T B, then say A and B are
Turing equivalent, and write A ≡T B. The Turing degree of A,
written [A]T , is [A] = {B ⊆ N : A ≡T B}. The Turing degrees are
D = {[A]T : A ⊆ N}.

Definition

For A ⊆ N, the Turing jump of A, written A′, is the halting set
relative to A:

A′ = {e ∈ N : ΦA
e (e) ↓}.

Definition

Let a = [A]T and b = [B]T be Turing degrees. Write a ≤ b if A ≤T B.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 13 / 20



The Turing Degrees

Example

The computable sets form the Turing degree 0 = [∅]T . The Turing
degree of the halting set K is 0′ = [∅′]T = [K]T .

We have
0 ⪇ 0′ ⪇ 0′′ ⪇ 0′′′ ⪇ · · ·

in the Turing degrees.

Questions

1 Are the Turing degrees linearly ordered? That is, for all a,b ∈ D,
is it true that either a ≤ b or b ≤ a?

2 Are the Turing degrees discretely ordered? For example, does
0 ⪇ a imply 0′ ≤ a?

The answer to both questions is NO!

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 14 / 20



Friedberg-Muchnik Theorem

Theorem (Friedberg-Muchnik)

There are sets A and B such that A,B ≤T ∅′, but A ≰T B and
B ≰T A.

Friedberg proved the theorem (as an undergraduate!) in the 1950s.
Muchnik proved the theorem independently around the same time.

The proof was the first instance of a priority argument.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 15 / 20



Friedberg-Muchnik Theorem

Proof sketch.

For each e ∈ N, we have two requirements:

Re : χA ̸= ΦB
e

Se : χB ̸= ΦA
e

We will think of A and B as infinite binary strings, where e.g. the nth
bit of A is 1 if n ∈ A, or 0 if n /∈ A. At each stage s of the induction,
we will build finite binary strings σs and τs which are initial segments
of A and B respectively. At the following stage s+ 1, extensions σs+1

and τs+1 are found.

At stage 0, let σ0 and τ0 be the empty string.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 16 / 20



Friedberg-Muchnik Theorem

Proof sketch, continued.

At stage s+ 1, if s is even, then s+ 1 = 2e+ 1 for some e. We satisfy
the requirement Re at this stage. Given σs and τs, let n = length(σs).

Ask ∅′: is there a string ρ extending τs such that Φρ
e(n) ↓?

• If yes, for this ρ, let

σs+1 = σ⌢
s (1− Φρ

e(n))

τs+1 = ρ

• If no, then let σs+1 = σ⌢
s 0 and τs+1 = τ⌢s 0.

Then proceed to the next stage of the construction.

If s is odd, then s+ 1 = 2e+ 2, and satisfy the requirement Se by
switching σs and τs in the even case.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 17 / 20



Friedberg-Muchnik Theorem

Proof.

Proof sketch, continued. Let A =
⋃

s∈N σs and B =
⋃

s∈N τs. Then A
and B are ∅′-computable, since

n ∈ A ⇐⇒ σn+1(n) = 1

n ∈ B ⇐⇒ τn+1(n) = 1

and the construction relied on ∅′.

Now we show A ≰T B. Suppose there is e such that χA = ΦB
e . At stage

2e+ 1, we chose n such that if ΦB
e (n) ↓, then σs+1(n) = 1− ΦB

e (n).
But that means χA(n) = 1− ΦB

e (n), so χA(n) ̸= ΦB
e (n).

The argument that B ≰T A is symmetric, and the proof is
complete.

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 18 / 20



The Turing Degrees

The Turing degrees are a fascinating structure with many interesting
properties, and there is still much to know.

Theorem

There are uncountably many Turing degrees, but for every Turing
degree a, the set of Turing degrees below a is countable.

Theorem

Every countable poset can be embedded into the Turing degrees below 0′.

Open Question

Is there a non-trivial automorphism of the Turing degrees? That is, is
there a bijective function f : D → D where a ≤ b implies f(a) ≤ f(b),
besides the identity function?

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 19 / 20



Further Reading

Introductory textbooks:

• Computability Theory by S. Barry Cooper

• Computability by Nigel Cutland

• Computability and Logic by George S. Boolos, John P. Burgess,
and Richard C. Jeffrey

Advanced topics:

• Turing Computability by Robert I. Soare

• Computability and Randomness by André Nies

• Models of Peano Arithmetic by Richard Kaye

• Subsystems of Second-Order Arithmetic by Stephen G. Simpson

• Reverse Mathematics by Damir D. Dzhafarov and Carl Mummert

Andrew DeLapo (UConn) The Turing Degrees March 2, 2024 20 / 20


