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Motivation

Let X and Y be homeomorphic topological spaces.

• How complicated is a homeomorphism f : X → Y ? Is there a
computable homeomorphism?

• If not, how many computable copies of X exist up to computable
homeomorphism?
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Computability Background

Definition

A partial function f : N → N is computable if there is an algorithm
(e.g. a computer program) P which can do what f does.

• If f(x) = y, then P should take input x and return output y in
some finite amount of time.

• If f is undefined on input x, then P should take input x and loop
forever, never returning any output.

Definition

A set A ⊆ N is computable if its characteristic function χA is
computable. In other words, there is an algorithm P such that:

• if x ∈ A, then P takes input x and returns output 1,

• if x /∈ A, then P takes input x and returns output 0.
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Computability Background

Fact

There are countably many programs, so there are countably many
computable functions.

Theorem (MRDP 1970)

In general, the function f : Nk → N given by

f(a1, . . . , ak) =

{
1 if a1x1 + · · ·+ akxk = 0 has an integer solution

0 otherwise

is not computable, answering Hilbert’s 10th question.
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CSC Spaces

Definition (Dorais 2011)

A countable second-countable space (CSC space) is a triple
(X,U , k) where X is a countable set, U = (Ui)i∈N is a countable basis
for open sets in X, and k is a function X × N× N → N such that

• for all x ∈ X, there is i ∈ N such that x ∈ Ui,

• for all x ∈ X and i, j ∈ N, if x ∈ Ui ∩ Uj , then
x ∈ Uk(x,i,j) ⊆ Ui ∩ Uj .

CSC spaces provide an excellent context for studying topological facts
in computability theory and reverse mathematics (Dorais 2011, Shafer
2020, Benham et al. 2024).
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CSC Spaces

Definition

A computable CSC space is a CSC space (N,U , k) where
U = (Ui)i∈N is uniformly computable and k is computable. That is,
there is a computable function f : N2 → N such that

f(x, i) =

{
1 if x ∈ Ui

0 if x /∈ Ui

.

Example

The discrete topology on N has a presentation as a computable CSC
space: NDIS = (N,U , k) where Ui = {i} for all i and k(x, i, j) = i.
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Effective Homeomorphisms

Definition (Dorais 2011)

Let (X,U , k) and (Y,V, ℓ) be CSC spaces.

• A function f : X → Y is effectively continuous if f is
computable and there is a computable function Φ such that for all
x and i, if f(x) ∈ Vi, then x ∈ UΦ(x,i) ⊆ f−1(Vi).

• A function f : X → Y is an effective homeomorphism if f is a
bijection and both f and f−1 are effectively continuous.
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Indiscrete Topology

Definition

A (CSC) topological space X has the indiscrete topology if the only
open sets in X are ∅ and X.

Example

Write NIND for the CSC space (N,U , k) where Ui = N for all i, and
k(x, i, j) = i. Then NIND is a computable CSC space with the
indiscrete topology.

Question

Given a computable CSC space X with the indiscrete topology, how
hard is it to find an effective homeomprhism f : X → NIND?
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Indiscrete Topology

Proposition

If X is a computable CSC space with the indiscrete topology, then the
identity map is an effective homeomorphism from X to NIND.

Definition

A CSC space X is computably categorical if for every computable
CSC space Y homeomorphic to X, there is an effective
homeomorphism Y → X.

Hence we say the indiscrete topology is computably categorical.
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Discrete Topology

Definition

A (CSC) topological space X has the discrete topology if every
subset of X is open in X.

Example

Write NDIS for the CSC space (N,U , k) where Ui = {i} for all i, and
k(x, i, j) = i. Then NDIS is a computable CSC space with the discrete
topology.

If X is a computable CSC space with the discrete topology, every
computable bijection X → NDIS is a homeomorphism. When is the
homeomorphism effective?
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Discrete Topology

Definition (Dorais 2011)

A CSC space (X,U , k) is effectively discrete if there is a computable
function d : X → N such that Ud(x) = {x} for all x ∈ X.

Facts

• There exist computable CSC spaces which are discrete but not
effectively discrete (see Dorais 2011 or Benham et al. 2024).

• If X and Y are effectively homeomorphic CSC spaces and X is
effectively discrete, then so is Y .

Proposition

NDIS is not computably categorical.
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Initial Segment Topology

Example

Write NIST for the CSC space (N,U , k) with Un = [0, n] for all n ∈ N,
and k(x, i, j) = min(i, j). See that NIST is a computable CSC space.

Definition

A (CSC) topological space X has the initial segment topology if X
is homeomorphic to NIST .

Unlike with NIND and NDIS , if there is a homeomorphism
f : X → NIST , then f is unique.
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Initial Segment Topology

For each e ∈ N, let Φe denote the eth computable function, and write
We = {x ∈ N : Φe(x) ↓}. In general, We is not computable.

Theorem

For each e such that We is noncomputable, there is a computable CSC
space Xe such that Xe has the initial segment topology, and the Turing
degree of the unique homeomorphism Xe → NIST is the same as that
of We.

Corollary

NIST is not computably categorical.
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Further Questions

Investigate computable categoricity for other CSC spaces:

• Cofinite topology on N
• Q with the Euclidean topology

Definition

The computable dimension of a CSC space X is the number of
computable copies of X up to effective homeomorphism.

We showed NIND has computable dimension 1, and we can show NIST

and NDIS have infinite computable dimension. Does there exist a CSC
space with finite computable dimension greater than 1?
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