Topics in Logic at UConn

Andrew DeLapo

September 3, 2023

Contents

1 Introduction 1
2 Computability, Randomness, and Geometry (Fall 2021) 2
2.1 Computability 2
2.1.1 Register Machines 2
2.1.2 Coding Sequences 2
2.1.3 Universal Register Machines 3
2.1.4 Classic Theorems 3
2.1.5 Computably Enumerable Sets 4
2.1.6 The Arithmetic Hierarchy 4
2.1.7 Turing Reducibility. 6
2.2 Randomness 6
3 Descriptive Set Theory (Spring 2022) 7
4 Generic Sets and Forcing in Computability (Fall 2022) 8
5 Weihrauch Degrees (Spring 2023) 9

1 Introduction

Almost every semester, the Mathematics Department at the University of Connecticut offers the graduate-level course MATH 5026: Topics in Mathematical Logic. The main topic of focus changes each semester. The goal of this document is to summarize the main ideas, results, and proofs from each course.

Any mistakes in these notes are likely transcription errors and are entirely the fault of the author.

2 Computability, Randomness, and Geometry (Fall 2021)

This course was taught by Professor Reed Solomon.

2.1 Computability

2.1.1 Register Machines

Definition 2.1. A register machine M consists of a finite set of registers $R_{0}, R_{1}, \ldots, R_{n}$, each holding a natural number, and a finite list of instructions $L_{0}, L_{1}, \ldots, L_{\ell}$, each in one of the following forms:

- $\mathrm{R}_{\mathrm{i}}:=\mathrm{R}_{\mathrm{i}}+1$.
- HALT
- If $R_{i} \neq 0$ then $R_{i}:=R_{i}-1$ and L_{a}, else L_{b}.

We can run such a register machine M on input $a_{0}, a_{1}, \ldots, a_{k} \in \mathbb{N}$ (where $k \leq n$) by setting $R_{i}=a_{i}$ for each $i \leq k, R_{i}=0$ for the remaining $k<i \leq n$, and following the instructions beginning with L_{0}. If we reach a HALT instruction with $R_{0}=b$, then write $M\left(a_{0}, \ldots, a_{k}\right) \downarrow=b$ and say the computation converges. If no HALT instruction is ever reached, then write $M\left(a_{0}, \ldots, a_{k}\right) \uparrow$ and say the computation diverges.

Definition 2.2. A partial function $f: X \rightarrow Y$ is a function whose domain is a subset of X.

- A partial function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is partial RM-computable if there is a register machine M with registers R_{0}, \ldots, R_{n} with $n \geq k-1$ such that for all $a_{0}, \ldots, a_{k-1} \in \mathbb{N}$,

$$
f\left(a_{0}, \ldots, a_{k-1}\right) \simeq M\left(a_{0}, \ldots, a_{k-1}\right)
$$

where \simeq means the values are equal if both computations converge, or both diverge.

- If $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is partial RM-computable and $\operatorname{dom}(f)=\mathbb{N}^{k}$, then f is (total) RMcomputable.
- A set (or relation) $R \subseteq \mathbb{N}^{k}$ is computable if its characteristic function is computable.

From now on, we just write "computable" for "RM-computable."
Fact. The class of partial computable functions is closed under composition, primitive recursion, and μ-recursion.

2.1.2 Coding Sequences

Recall that \mathbb{N}^{k} and \mathbb{N} are in bijection. Often we will think of a finite tuple ($a_{0}, a_{1}, \ldots, a_{k}$) as being "coded" by a single finite number via such a bijection. A convenient (and computable) bijection $\langle\cdot, \cdot\rangle: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is given by

$$
\langle x, y\rangle=\frac{1}{2}(x+y)(x+y+1)+x
$$

where importantly the functions π_{1}, π_{2} such that for all $z, z=\left\langle\pi_{1}(z), \pi_{2}(z)\right\rangle$ are also computable. We can use primitive recursion to code any finite tuple:

$$
\begin{aligned}
\lambda & \mapsto\langle 0,0\rangle \\
n & \mapsto\langle 0, n+1\rangle \\
\left(n_{0}, \ldots, n_{k}\right) & \mapsto\left\langle k,\left\langle n_{0}, \ldots, n_{k}\right\rangle\right\rangle
\end{aligned}
$$

where λ is the empty sequence.

2.1.3 Universal Register Machines

Definition 2.3. A register machine V is universal if for every register machine M there is a number e_{M} such that for all $x, M(x) \simeq V\left(e_{M}, x\right)$.

Fact. By coding, universal register machines exist.
Fix a universal register machine V. An important consequence of the existence of a universal register machine is that we can put the partial computable functions into an effective list $\Phi_{0}(x), \Phi_{1}(x), \ldots$, where $\Phi_{e}(x)=V(e, x)$.

Write $V_{s}(e, x)$ for the action of V on inputs e and x after s instruction steps. Then write $\Phi_{e, s}(x)=$ $V_{s}(e, x)$. Assume the following conventions:

- $\Phi_{e, s}(x) \downarrow=y \Longrightarrow x, y<s$,
- $\Phi_{e, 0}(x) \uparrow$
- There is at most one x such that $\Phi_{e, s+1}(x) \downarrow$ but $\Phi_{e, s}(x) \uparrow$ (meaning at each step, Φ_{e} only converges on at most one new value).

2.1.4 Classic Theorems

Theorem $2.1\left(s_{n}^{m}\right.$ Theorem, Basic Version). There is a computable injective function $s_{1}^{1}(e, x)$ such that for all e, $x, y, \Phi_{s_{1}^{1}(e, x)}(y)=\Phi_{e}(x, y)$.

The s_{n}^{m} theorem is usually used to obtain the following type of result:
Example. There is a computable function $h(x)$ such that $\Phi_{h(x)}(y) \downarrow$ if and only if $x=y$.
Proof. Let

$$
g(x, y)=\left\{\begin{array}{ll}
0 & \text { if } x=y \\
\uparrow & \text { otherwise }
\end{array} .\right.
$$

Then g is a partial computable function, so let e be an index for g, meaning $\Phi_{e}(x, y)=g(x, y)$. By the s_{n}^{m} theorem, there is a computable function s_{1}^{1} such that $\Phi_{s_{1}^{1}(e, x)}(y)=\Phi_{e}(x, y)=g(x, y)$. Thus let $h(x)=s_{1}^{1}(e, x)$.

Theorem 2.2 (s_{n}^{m} Theorem, Full Version). For each $m, n \geq 1$, there is a computable injective function s_{n}^{m} such that for all n-tuples \bar{x}, m-tuples \bar{y}, and all e,

$$
\Phi_{s_{n}^{m}(e, \bar{x})}(\bar{y})=\Phi_{e}(\bar{x}, \bar{y}) .
$$

Theorem 2.3 (Recursion Theorem). For every computable function f, there is n such that $\Phi_{n}=$ $\Phi_{f(n)}$ 。

The s_{n}^{m} theorem and recursion theorem are often used in combination to obtain the following type of result:

Example. There is n such that $\operatorname{dom}\left(\Phi_{n}\right)=\{n\}$.
Proof. In the previous example, we used the s_{n}^{m} theorem to find a function h such that $\Phi_{h(x)}(y) \downarrow$ if and only if $x=y$. Applying the recursion theorem to h, there is n such that $\Phi_{n}=\Phi_{h(n)}$. Thus $\Phi_{n}(m) \downarrow$ if and only if $n=m$, meaning $\operatorname{dom}\left(\Phi_{n}\right)=\{n\}$.

Theorem 2.4 (Halting Problem). The set $K=\left\{e: \Phi_{e}(e) \downarrow\right\}$ is not computable.
Proof. Assume towards a contradiction that K is computable, meaning there is an index i such that Φ_{i} is the characteristic function of K. Define a function f by

$$
f(x)= \begin{cases}\Phi_{x}(x)+1 & \text { if } \Phi_{i}(x)=1 \\ 0 & \text { if } \Phi_{i}(x)=0\end{cases}
$$

Then f is a total computable function, so let e be an index for f. Since Φ_{e} is total, $\Phi_{e}(e) \downarrow$, so $\Phi_{i}(e)=1$. We then have $f(e)=\Phi_{e}(e)+1$, but this is a contradiction since $f(e)=\Phi_{e}(e)$. Thus the characteristic function for the halting set K cannot be computable, and so the halting problem is not computable.

2.1.5 Computably Enumerable Sets

Definition 2.4. A set A is computably enumerable (c.e.) if there is an index e such that $A=\operatorname{dom}\left(\Phi_{e}\right)$.

Write W_{e} for $\operatorname{dom}\left(\Phi_{e}\right)$. Thus $W_{0}, W_{1}, W_{2}, \ldots$ is an effective list of the c.e. sets.
Example. All computable sets are c.e. The halting set K is a c.e. set which is not computable.
Theorem 2.5. A set A is c.e. if and only if $A=\operatorname{range}\left(\Phi_{e}\right)$ for some e.
Theorem 2.6. A set A is computable if and only if A and its complement are both c.e.

2.1.6 The Arithmetic Hierarchy

Definition 2.5. Let $n \geq 1$.

- A set $A \subseteq \mathbb{N}$ is Σ_{n}^{0} if there is a computable relation $R\left(x, y_{1}, \ldots, y_{n}\right)$ such that

$$
x \in A \Longleftrightarrow \exists y_{1} \forall y_{2} \exists y_{3} \cdots \mathrm{Q} y_{n} R\left(x, y_{1}, \ldots, y_{n}\right)
$$

where the quantifier Q is \exists if n is odd and \forall if n is even.

- A set $A \subseteq \mathbb{N}$ is Π_{n}^{0} if there is a computable relation $R\left(x, y_{1}, \ldots, y_{n}\right)$ such that

$$
x \in A \Longleftrightarrow \forall y_{1} \exists y_{2} \forall y_{3} \cdots \mathrm{Q} y_{n} R\left(x, y_{1}, \ldots, y_{n}\right)
$$

where Q is \forall if n is odd and \exists if n is even.

- A set A is Δ_{n}^{0} if A is both Σ_{n}^{0} and Π_{n}^{0}.

Theorem 2.7. A is Σ_{1}^{0} if and only if A is c.e. Thus A is Π_{1}^{0} if and only if the complement of A is c.e., and A is computable if and only if A is Δ_{1}^{0}.
Example. Here are a few more examples of sets which are higher in the arithmetical hierarchy.

- Tot $=\left\{e: \Phi_{e}\right.$ is total $\}$ is Π_{2}^{0}, since

$$
e \in \operatorname{Tot} \Longleftrightarrow \forall x \exists s \Phi_{e, s}(x) \downarrow
$$

- Fin $=\left\{e: W_{e}\right.$ is finite $\}$ is Σ_{2}^{0}, since

$$
e \in \operatorname{Fin} \Longleftrightarrow \exists x \forall y \forall s\left(\Phi_{e, s}(y) \uparrow \vee y \leq x\right) .
$$

- $\operatorname{Inf}=\left\{e: W_{e}\right.$ is infinite $\}$ is Π_{2}^{0}, since its complement Fin is Σ_{2}^{0}.
- $\operatorname{Cof}=\left\{e: W_{e}\right.$ is cofinite $\}$ is Σ_{3}^{0}, since

$$
e \in \operatorname{Cof} \Longleftrightarrow \exists x \forall y \exists s\left(y<x \vee \Phi_{e, s}(y) \downarrow\right) .
$$

- CoInf $=\left\{e: W_{e}\right.$ is coinfinite $\}$ is Π_{3}^{0} since its complement Cof is Σ_{3}^{0}.

We showed above that Fin is Σ_{2}^{0}. How do we know there is no way to write it more simply, say as a Π_{1}^{0} or Σ_{1}^{0} set? Saying that Fin is Σ_{2}^{0} puts an upper bound on its complexity. The notions of Σ_{n}^{0}-completeness and Π_{n}^{0}-completeness put lower bounds on the complexities of sets, and we will see that Fin is Σ_{2}^{0}-complete, which implies it cannot be written any simpler.
Definition 2.6. Let A and B be sets. A is 1-reducible to B, written $A \leq_{1} B$, if there is a computable injective function f such that for all $x, x \in A$ if and only if $f(x) \in B$. Write $A \equiv_{1} B$ if $A \leq_{1} B$ and $B \leq_{1} A$.
Fact. \equiv_{1} is an equivalence relation.
Definition 2.7. A set A is Σ_{n}^{0}-complete if A is Σ_{n}^{0} and for all Σ_{n}^{0} sets $X, X \leq{ }_{1} A$. Similarly, A is Π_{n}^{0}-complete if A is Π_{n}^{0} and for all Π_{n}^{0} sets $X, X \leq_{1} A$.
Example. The halting set $K=\left\{e: \Phi_{e}(e) \downarrow\right\}$ is Σ_{1}^{0}-complete.
Example. The set Fin $=\left\{e: W_{e}\right.$ is finite $\}$ is Σ_{2}^{0}-complete.
Proof. We showed above that Fin is Σ_{2}^{0}. Let A be Σ_{2}^{0}. We must show $A \leq_{1}$ Fin. Fix a computable relation $R(x, y, z)$ such that $A=\{x: \exists y \forall z R(x, y, z)\}$. Define

$$
g(x, u)=\left\{\begin{array}{ll}
0 & \text { if } \forall y \leq u \exists z \neg R(x, y, z) \\
\uparrow & \text { otherwise }
\end{array} .\right.
$$

Fix e such that $\Phi_{e}(x, u)=g(x, u)$. By the s_{n}^{m} theorem, there is a computable injective function s_{1}^{1} such that

$$
\Phi_{s_{1}^{1}(e, x)}(u)=\Phi_{e}(x, u)=g(x, u) .
$$

Let $f(x)=s_{1}^{1}(e, x)$. We claim that f is a 1-reduction from A to Fin. Suppose $x \in A$. Then the statement $\exists y \forall z R(x, y, z)$ holds, so fix y_{0} such that for all $z, R(x, y, z)$ holds. For all $u \geq y_{0}$, $g(x, u) \uparrow$, so for all $u \geq y_{0}, \Phi_{f(x)}(u) \uparrow$. Hence $W_{f(x)}$ is finite, so $f(x) \in$ Fin. Now suppose $x \notin A$. Then the statement $\exists y \forall z R(x, y, z)$ does not hold, so for all y, there is z such that $\neg R(x, y, z)$. Then $\Phi_{f(x)}(u) \downarrow$ for all u, meaning $W_{f(x)}=\mathbb{N}$, and $f(x) \notin$ Fin.
Example. The set Tot $=\left\{e: \Phi_{e}\right.$ is total $\}$ is Π_{2}^{0}-complete. To prove it, apply the above argument to \bar{A} when A is Π_{2}^{0}.

2.1.7 Turing Reducibility

2.2 Randomness

Test

3 Descriptive Set Theory (Spring 2022)

4 Generic Sets and Forcing in Computability (Fall 2022)

5 Weihrauch Degrees (Spring 2023)

