
Topics in Logic at UConn

Andrew DeLapo

September 3, 2023

Contents

1 Introduction 1

2 Computability, Randomness, and Geometry (Fall 2021) 2
2.1 Computability . 2

2.1.1 Register Machines . 2
2.1.2 Coding Sequences . 2
2.1.3 Universal Register Machines . 3
2.1.4 Classic Theorems . 3
2.1.5 Computably Enumerable Sets . 4
2.1.6 The Arithmetic Hierarchy . 4
2.1.7 Turing Reducibility . 6

2.2 Randomness . 6

3 Descriptive Set Theory (Spring 2022) 7

4 Generic Sets and Forcing in Computability (Fall 2022) 8

5 Weihrauch Degrees (Spring 2023) 9

1 Introduction

Almost every semester, the Mathematics Department at the University of Connecticut offers the
graduate-level course MATH 5026: Topics in Mathematical Logic. The main topic of focus changes
each semester. The goal of this document is to summarize the main ideas, results, and proofs from
each course.

Any mistakes in these notes are likely transcription errors and are entirely the fault of the author.

1

Topics in Logic Andrew DeLapo

2 Computability, Randomness, and Geometry (Fall 2021)

This course was taught by Professor Reed Solomon.

2.1 Computability

2.1.1 Register Machines

Definition 2.1. A register machine M consists of a finite set of registers R0, R1, . . . , Rn, each
holding a natural number, and a finite list of instructions L0, L1, . . . , Lℓ, each in one of the following
forms:

� Ri := Ri + 1.

� HALT.

� If Ri ̸= 0 then Ri := Ri − 1 and La, else Lb.

We can run such a register machine M on input a0, a1, . . . , ak ∈ N (where k ≤ n) by setting Ri = ai
for each i ≤ k, Ri = 0 for the remaining k < i ≤ n, and following the instructions beginning
with L0. If we reach a HALT instruction with R0 = b, then write M(a0, . . . , ak) ↓= b and say the
computation converges. If no HALT instruction is ever reached, then write M(a0, . . . , ak) ↑ and
say the computation diverges.

Definition 2.2. A partial function f : X → Y is a function whose domain is a subset of X.

� A partial function f : Nk → N is partial RM-computable if there is a register machine M
with registers R0, . . . , Rn with n ≥ k − 1 such that for all a0, . . . , ak−1 ∈ N,

f(a0, . . . , ak−1) ≃ M(a0, . . . , ak−1)

where ≃ means the values are equal if both computations converge, or both diverge.

� If f : Nk → N is partial RM-computable and dom(f) = Nk, then f is (total) RM-
computable.

� A set (or relation) R ⊆ Nk is computable if its characteristic function is computable.

From now on, we just write “computable” for “RM-computable.”

Fact. The class of partial computable functions is closed under composition, primitive recursion,
and µ-recursion.

2.1.2 Coding Sequences

Recall that Nk and N are in bijection. Often we will think of a finite tuple (a0, a1, . . . , ak) as being
“coded” by a single finite number via such a bijection. A convenient (and computable) bijection
⟨·, ·⟩ : N2 → N is given by

⟨x, y⟩ = 1

2
(x+ y)(x+ y + 1) + x

2

Topics in Logic Andrew DeLapo

where importantly the functions π1, π2 such that for all z, z = ⟨π1(z), π2(z)⟩ are also computable.
We can use primitive recursion to code any finite tuple:

λ 7→ ⟨0, 0⟩
n 7→ ⟨0, n+ 1⟩

(n0, . . . , nk) 7→ ⟨k, ⟨n0, . . . , nk⟩⟩

where λ is the empty sequence.

2.1.3 Universal Register Machines

Definition 2.3. A register machine V is universal if for every register machine M there is a
number eM such that for all x, M(x) ≃ V (eM , x).

Fact. By coding, universal register machines exist.

Fix a universal register machine V . An important consequence of the existence of a universal register
machine is that we can put the partial computable functions into an effective list Φ0(x),Φ1(x), . . . ,
where Φe(x) = V (e, x).

Write Vs(e, x) for the action of V on inputs e and x after s instruction steps. Then write Φe,s(x) =
Vs(e, x). Assume the following conventions:

� Φe,s(x) ↓= y =⇒ x, y < s,

� Φe,0(x) ↑

� There is at most one x such that Φe,s+1(x) ↓ but Φe,s(x) ↑ (meaning at each step, Φe only
converges on at most one new value).

2.1.4 Classic Theorems

Theorem 2.1 (smn Theorem, Basic Version). There is a computable injective function s11(e, x) such
that for all e, x, y, Φs11(e,x)

(y) = Φe(x, y).

The smn theorem is usually used to obtain the following type of result:

Example. There is a computable function h(x) such that Φh(x)(y) ↓ if and only if x = y.

Proof. Let

g(x, y) =

{
0 if x = y

↑ otherwise
.

Then g is a partial computable function, so let e be an index for g, meaning Φe(x, y) = g(x, y). By
the smn theorem, there is a computable function s11 such that Φs11(e,x)

(y) = Φe(x, y) = g(x, y). Thus

let h(x) = s11(e, x).

Theorem 2.2 (smn Theorem, Full Version). For each m,n ≥ 1, there is a computable injective
function smn such that for all n-tuples x, m-tuples y, and all e,

Φsmn (e,x)(y) = Φe(x, y).

3

Topics in Logic Andrew DeLapo

Theorem 2.3 (Recursion Theorem). For every computable function f , there is n such that Φn =
Φf(n).

The smn theorem and recursion theorem are often used in combination to obtain the following type
of result:

Example. There is n such that dom(Φn) = {n}.

Proof. In the previous example, we used the smn theorem to find a function h such that Φh(x)(y) ↓
if and only if x = y. Applying the recursion theorem to h, there is n such that Φn = Φh(n). Thus
Φn(m) ↓ if and only if n = m, meaning dom(Φn) = {n}.

Theorem 2.4 (Halting Problem). The set K = {e : Φe(e) ↓} is not computable.

Proof. Assume towards a contradiction that K is computable, meaning there is an index i such
that Φi is the characteristic function of K. Define a function f by

f(x) =

{
Φx(x) + 1 if Φi(x) = 1

0 if Φi(x) = 0
.

Then f is a total computable function, so let e be an index for f . Since Φe is total, Φe(e) ↓, so
Φi(e) = 1. We then have f(e) = Φe(e)+1, but this is a contradiction since f(e) = Φe(e). Thus the
characteristic function for the halting set K cannot be computable, and so the halting problem is
not computable.

2.1.5 Computably Enumerable Sets

Definition 2.4. A set A is computably enumerable (c.e.) if there is an index e such that
A = dom(Φe).

Write We for dom(Φe). Thus W0,W1,W2, . . . is an effective list of the c.e. sets.

Example. All computable sets are c.e. The halting set K is a c.e. set which is not computable.

Theorem 2.5. A set A is c.e. if and only if A = range(Φe) for some e.

Theorem 2.6. A set A is computable if and only if A and its complement are both c.e.

2.1.6 The Arithmetic Hierarchy

Definition 2.5. Let n ≥ 1.

� A set A ⊆ N is Σ0
n if there is a computable relation R(x, y1, . . . , yn) such that

x ∈ A ⇐⇒ ∃y1∀y2∃y3 · · ·QynR(x, y1, . . . , yn)

where the quantifier Q is ∃ if n is odd and ∀ if n is even.

� A set A ⊆ N is Π0
n if there is a computable relation R(x, y1, . . . , yn) such that

x ∈ A ⇐⇒ ∀y1∃y2∀y3 · · ·QynR(x, y1, . . . , yn)

where Q is ∀ if n is odd and ∃ if n is even.

4

Topics in Logic Andrew DeLapo

� A set A is ∆0
n if A is both Σ0

n and Π0
n.

Theorem 2.7. A is Σ0
1 if and only if A is c.e. Thus A is Π0

1 if and only if the complement of A
is c.e., and A is computable if and only if A is ∆0

1.

Example. Here are a few more examples of sets which are higher in the arithmetical hierarchy.

� Tot = {e : Φe is total} is Π0
2, since

e ∈ Tot ⇐⇒ ∀x∃sΦe,s(x) ↓ .

� Fin = {e : We is finite} is Σ0
2, since

e ∈ Fin ⇐⇒ ∃x∀y∀s(Φe,s(y) ↑ ∨y ≤ x).

� Inf = {e : We is infinite} is Π0
2, since its complement Fin is Σ0

2.

� Cof = {e : We is cofinite} is Σ0
3, since

e ∈ Cof ⇐⇒ ∃x∀y∃s(y < x ∨ Φe,s(y) ↓).

� CoInf = {e : We is coinfinite} is Π0
3 since its complement Cof is Σ0

3.

We showed above that Fin is Σ0
2. How do we know there is no way to write it more simply, say

as a Π0
1 or Σ0

1 set? Saying that Fin is Σ0
2 puts an upper bound on its complexity. The notions of

Σ0
n-completeness and Π0

n-completeness put lower bounds on the complexities of sets, and we will
see that Fin is Σ0

2-complete, which implies it cannot be written any simpler.

Definition 2.6. Let A and B be sets. A is 1-reducible to B, written A ≤1 B, if there is a
computable injective function f such that for all x, x ∈ A if and only if f(x) ∈ B. Write A ≡1 B
if A ≤1 B and B ≤1 A.

Fact. ≡1 is an equivalence relation.

Definition 2.7. A set A is Σ0
n-complete if A is Σ0

n and for all Σ0
n sets X, X ≤1 A. Similarly, A

is Π0
n-complete if A is Π0

n and for all Π0
n sets X, X ≤1 A.

Example. The halting set K = {e : Φe(e) ↓} is Σ0
1-complete.

Example. The set Fin = {e : We is finite} is Σ0
2-complete.

Proof. We showed above that Fin is Σ0
2. Let A be Σ0

2. We must show A ≤1 Fin. Fix a computable
relation R(x, y, z) such that A = {x : ∃y∀zR(x, y, z)}. Define

g(x, u) =

{
0 if ∀y ≤ u∃z¬R(x, y, z)

↑ otherwise
.

Fix e such that Φe(x, u) = g(x, u). By the smn theorem, there is a computable injective function s11
such that

Φs11(e,x)
(u) = Φe(x, u) = g(x, u).

Let f(x) = s11(e, x). We claim that f is a 1-reduction from A to Fin. Suppose x ∈ A. Then
the statement ∃y∀zR(x, y, z) holds, so fix y0 such that for all z, R(x, y, z) holds. For all u ≥ y0,
g(x, u) ↑, so for all u ≥ y0, Φf(x)(u) ↑. Hence Wf(x) is finite, so f(x) ∈ Fin. Now suppose x /∈ A.
Then the statement ∃y∀zR(x, y, z) does not hold, so for all y, there is z such that ¬R(x, y, z). Then
Φf(x)(u) ↓ for all u, meaning Wf(x) = N, and f(x) /∈ Fin.

Example. The set Tot = {e : Φe is total} is Π0
2-complete. To prove it, apply the above argument

to A when A is Π0
2.

5

Topics in Logic Andrew DeLapo

2.1.7 Turing Reducibility

2.2 Randomness

Test

6

Topics in Logic Andrew DeLapo

3 Descriptive Set Theory (Spring 2022)

7

Topics in Logic Andrew DeLapo

4 Generic Sets and Forcing in Computability (Fall 2022)

8

Topics in Logic Andrew DeLapo

5 Weihrauch Degrees (Spring 2023)

9

	Introduction
	Computability, Randomness, and Geometry (Fall 2021)
	Computability
	Register Machines
	Coding Sequences
	Universal Register Machines
	Classic Theorems
	Computably Enumerable Sets
	The Arithmetic Hierarchy
	Turing Reducibility

	Randomness

	Descriptive Set Theory (Spring 2022)
	Generic Sets and Forcing in Computability (Fall 2022)
	Weihrauch Degrees (Spring 2023)

